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Abstract—This paper deals with the analytical study of the dynamic plastic growth of microvoids
under the combined action of hydrostatic and deviatoric stresses. The results of this analysis are
discussed with the help of a numerical study of the void growth relationship derived, and applied
to the case of spall fracture. The conclusion is that void expansion may be affected in different
manners by the presence of a field of deviatoric (purely distortional) strain rates. If the deviatoric
plastic strain rate is not large compared with the rate of volumetric expansion, then, for void growth
controlled fracture, the spall strength of the material tends to decrease with respect to a purely
hydrostatic stress. The quantitative loss of strength may be important, depending upon the loading
conditions. When void growth initiates in a state of very large deviatoric strain rates then, under
the conditions of the analysis, the volumetric expansion of the voids may require excessive large
stresses, so as to become very difficult in practice. Then, in such a situation a different mechanism,
such as void nucleation for instance, might control the fracture process rather than plastic void
growth.

1. INTRODUCTION

Spall fracture is a type of fracture in the form of an internal cavitation, which is caused by
the interaction of stress waves near a free surface. It has been identified that there are two
fundamental modes of dynamic fracture : brittle, where spall is controlled by the evolution
of microcracks in the material which propagate and finally coalesce to generate the spall
plane, and ductile, where spall is controlled by the dynamic evolution and coalescence of
microvoids, accompanied by a large plastic deformation of the material around the voids.
Several attempts have been made to define the phenomena controlling spall fracture. It has
been established that spall fracture is associated with the complicated concurrence of
nucleation, growth and coalescence of microdefects, which can depend on both the pre-
existing and the evolving microstructure. Review articles [see Curran (1982), Curran et al.
(1987) and Meyers and Aimone (1983)] explain in some detail the most relevant results of
both experimental and theoretical studies of spall fracture.

The spall strength of materials is a parameter which has been frequently found to vary
in a wide range in different testing conditions, in such a way that no unique value of the
spall strength can be associated to a given material (Meyers and Aimone, 1983 ; Grady,
1988 ; Buchar et al., 1991 ; Zurek and Frantz, 1988). A plastic void growth model for ductile
fracture such as those previously presented in Carroll and Holt (1972) and Johnson (1981),
can be invoked to justify strain rate dependency of spall strength (Buchar ez al., 1991). In
addition, careful examination of the fracture surfaces also show that a given material can
suffer transition from ductile to brittle fracture (Grady, 1988), or from intergranular to
transgranular fracture when the experimental conditions are varied (Buchar e al., 1991 ;
Zurek and Frantz, 1988), giving further arguments to justify the observed loading conditions
dependency of the spall strength.

In the present paper, we investigate the influence that a combined state of hydrostatic
and deviatoric stresses may have in the spall strength of ductile materials for the case of
void growth controlled fracture. Although in the past several authors have studied the void
growth problem under triaxiality conditions [see for instance Rice and Tracey (1968),
Gurson (1977), Duva and Hutchinson (1984), Cocks (1989) and Ponte Castafieda and
Willis (1988)] they have limited their analysis to static loading, ignoring the influence of
inertial effects. In order to achieve our objective, we analyse in detail the plastic void growth
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process which takes place under extremely high rates of loading. The voids are assumed to
be spherical and to grow plastically due to the action of a purely dilatational velocity field,
plus a purely deviatoric velocity field, the latter causing shape distortion keeping the material
volume constant. Then, we modify a procedure previously used by Gurson (1977) to derive
the macroscopic yield locus of porous materials, in order to embody the inertia effects.
Then, we derive the void growth equation under a combined stress state.

2. VOID GROWTH EQUATIONS

2.1. General equations

Expressions for macroscopic stresses are derived as a first step towards the void growth
equations. In Gurson’s paper, the actual distribution of voids in a matrix is replaced by a
single spherical void embedded in a spherical portion of matrix material, an idea which, to
the author’s knowledge, was first introduced by Carroll and Holt (1972). The resulting
thick hollow sphere is expected to represent in an average sense the actual behaviour of the
porous material. Initially, the radius of the void is taken as a value representing the size of
the actual voids, whereas the outer radius of the sphere is selected in order to agree with
the initial volume fraction of voids present in the material. In the above model, each void
was then assumed to be subjected to a velocity {or deformation) field composed of the sum
of two different fields: the first one was a radial velocity field with spherical symmetry
associated to a simple volumetric expansion of the hollow sphere, with no shape change to
it. The strain velocity field components associated with such velocity field (subindexed with
letter v) are given by:

év.rr = %&,(bff) 39 év,e(-) = év,tﬁé = "’g‘v,rr/2 (1)

where &, is the macroscopic volumetric strain rate defined as VIV, where V is the total
macroscopic volume, indexes r, @ and ¢ indicate spherical coordinates components, and b
is the outer radius of the void matrix model at the time considered. The value of the inner
radius a of the void matrix model at a given instant is assumed to correspond to the actual
void radius, whereas the ratio (a/b)’ is assumed to be equal to the volume fraction of the
voids ¢ actually present in the material at the same instant,

The second one was a velocity field giving rise to pure distortion of the material keeping
the total volume constant. So, we will refer to this latter velocity field as the deviatoric
velocity field. This deviatoric velocity field was assumed to be uniform within the material,
which may not be a rigorous assumption, but it is expected to represent, in a statistically
averaged sense, the actual situation experienced by the material. In the present paper, and
to avoid unnecessary complications, the components é; of this latter velocity field will be
expressed in a system of principal axes of strain, and they will be assumed to be time
independent.

Neglecting the inertia effects, Gurson (1977) was able to compute the macroscopic
volumetric stress oy in a generic manner as:

1
oy = 17(2/3) . J; 0. 0(Ey8y) 06, dV @

where ¥ is the macroscopic volume, g, is the microscopic equivalent yield stress, &y stands
for the volumetric macroscopic deformation rate and é; denotes the local strain rate tensor
components. Then, for the particular velocity field selected, the macroscopic hydrostatic
tension in equilibrium with the velocity field considered is:

1 .
O, 321 (3ed/2+ (2/3)&d /A~ dAjA? 3
4

oy = (2/3)”2j

where 4 = (r/b)?, ¢ = (a/b)? is the material porosity as before and éj, is the macroscopic
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deviatoric strain rate. ép, is defined as a function of the components & of the macroscopic
deviatoric strain rate tensor in a system of principal axes of strain as é, = (2¢¢,/3) /2.

For a perfectly plastic material for instance, where 6, = g, the macroscopic volumetric
stress is, after integration :

_ 209 (& +&(3ep/2") ' +éy
o= (Gt e ) @

This latter expression was previously derived by Gurson (1977).

2.2. Void growth equations in the presence of deviatoric strain rates and inertia terms

To include the inertia terms, Gurson’s formulation is modified with the inclusion of
the associated energy dissipation. We recall here that in Gurson’s formulation the velocity
field was assumed to be the sum of a radial velocity field with spherical symmetry, analogous
to that of Carroll and Holt’s paper, plus a purely deviatoric velocity field. By definition,
this latter velocity field yielded only a distortion of the material keeping its macroscopic
volume constant. From the principle of virtual work it follows that the macroscopic stresses
g equilibrating the inertia effects associated to volumetric expansion of the material will
be given by the expression:

pf o av o)

o= a—
|4 ey

where g is mass density, a is the acceleration vector, r is the position vector and &y is the
macroscopic volumetric strain. It is desirable for our purposes to eliminate from the above
expression variables r and ey. To this end we remark that we are dealing with first order
homogeneous velocity fields in the components of the macroscopic strain rates tensor. Then,
it is accomplished that :

v 8v.+6vé+6v.+6v
= =& e € v
VT oe, ' de, 1 de,

Yy ¢ (6

where v denotes the velocity vector. Then, by assuming that r is a function of &, and the e,
it is easy to show that we must have:

ar  Ov
68\/ - é{;;‘ (7)
In this way, eqn (5) can be expressed as:
A
o= Vja % dv. ®)

As a consequence, expressions for velocities and accelerations are needed for evaluating o;.
Since we know that, by definition, the velocity field associated with deviatoric strains is not
dependent upon the volumetric strain rate éy, it is clear that only the radial velocity field
with spherical symmetry will contribute to the integral involved in eqn (8). Since these latter
velocities are radial, we will need to compute only the radial components of the total
acceleration, in order to evaluate the right-hand side of eqn (8). Moreover, the total
acceleration is composed of two terms, namely, an acceleration associated with the radial
velocity field with spherical symmetry, and a second term associated with the deviatoric
velocity field. From all the above, the evaluation of the radial velocity and acceleration
velocity fields with spherical symmetry has been made previously (Carroll and Holt, 1972;
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Johnson, 1981). On the contrary, the evaluation of the radial component of the acceleration

associated to the purely deviatoric velocity field needs some additional computation.
Subsequently, index i will be used to refer to the Cartesian components of velocities

and accelerations, in principal axes of strain, associated with the deviatoric velocity field,

whereas index R will indicate the radial component of the corresponding magnitudes. On

the other hand, index r will refer to the components of velocity and acceleration of the

radial velocity field with spherical symmetry analogous to that defined by Carroll and Holt.
From eqn (8) we can write:

P g0 O
o = % j {a, Py +-ag (%v] dav. {9)

Both v, and a4, are known from previous works (Carroll and Holt, 1972; Johnson, 1981),
and are given by

v, = —B(1)/3r* (10)
and
a, = B(1)/3r+ B(2)?/18r* (1D
where r is an internal radius and B(?) is a function given by :
B(f) = ad(ag—a)/(xo—1). (12)

In the above equation, a, is the initial value of the void radius, « is the distention factor
and o, is its corresponding initial value (Johnson, 1981). The distention factor is related to
material porosity by the expression a = 1/(1 —£&).

We now evaluate ag. It is important to remark at this stage that eqn (9) refers to the
real values of velocities and accelerations. In our formulation, however, we are dealing with
a uniform deviatoric strain rate field which, as previously said, represents material behaviour
only in an average sense. So, since locally unbalanced inertia stresses may be introduced
by the velocity fields considered, results obtained from these analyses should be taken to
be valid in an average sense only.

The velocity field associated with deviatoric plastic strain rates is given by

v, = &x; (13)

where the x; (i = 1, 2, 3) are Cartesian coordinates. The acceleration associated with this
velocity field is:

a; = élx; (14

and the radial component of the acceleration associated to the deviatoric velocity field will
then be:
ag = r[é3cos? @+¢éisen?fcos® P +é%sen? Osen’ p] (15)

where r, § and ¢ are spherical coordinates. By replacing this latter expression into eqn (9)
together with those corresponding to v, and a,, we finally obtain:

2
Pay

A2
0(d.6,3) +p 2 (a)(xo— 1) V'a}(1 - £°) (16)

where the function (4, 4, «) is defined by eqn (17):
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Q@ d, ) = df(a—1)""P—a™ ] = %2[(01—1)“/3—&"“/3]. amn

We recall here that o = 1/(1 —&). Function Q has been expressed as a function of parameter
o just to emphasize the fact that the term involving such a function in eqn (16) is simply
the same inertia term associated with the growth of microvoids under a purely hydrostatic
stress, an expression previously derived by Carroll and Holt (1972) and Johnson (1981).
The term involving é3 in eqn (16) corresponds to the volumetric resistance introduced by
the purely deviatoric velocity field. We see that this latter term always has a positive sign.
This is due to the fact that a uniform deviatoric strain rate field has been assumed to be
present and, consequently, particles increase their velocities as they move outwards [see eqn
(13)], whereas they decrease their velocity as they move inward, in order to keep the strain
rate constant. Thus, inertia forces associated with the deviatoric strain rate considered act
inward, and a net positive power must be added in order to overcome such inertia forces.
So, from the above expressions the dynamic void growth equation becomes :

2
pay

T Sy

22
0@, a, 0!)+p%0(0t/(ao—1))2’305(1—52’3) 18)

where o is the macroscopic hydrostatic stress and oy is the plastic resistance to volumetric
expansion.

2.3. Influence of viscosity on dynamic void growth
A more general expression considering the influence of a linear viscosity term of the
type:

0. = oo(1+ Bé) (19)

where ¢, and B are constants, on the dynamic void growth relationships in presence of
deviatoric plastic strain rates is now derived. Equation (19) is frequently found to fit with
the experimental results in the very high strain rate regime.

It has been shown, Gurson (1977), that the local strain rate & can be expressed as:

2 = 1o+ H6ID 626/ 68) 20)

where &, is the radial component of tensor é;. Then, by developing into series to the first
order in &, it is obtained by substitution of eqn (19) into eqn (3) that the macroscopic
volumetric stress equilibrating the plastic resistance to deformation is:

>+(2/3)zaoBéV-1—_€:£. @1

_ 209, ((éé+¢2(3eD/2)2)”2+év
N3 P (@ Ben/2)) T éy)

Consequently, the dynamic void growth equation for this viscous material is eqn (18),
where oy is given by eqn (21). Expressions for oy corresponding to more complicated
viscous behaviour have been derived elsewhere (Cortes, 1989).

3. NUMERICAL ANALYSIS

In this section, we study numerically the analytical formulation previously developed,
assuming a material subjected to a linearly increasing hydrostatic pressure at a rate of
1 GPa us™ ' and 10 GPA pus™ ', alternatively. These are loading rates which may be typically
found in impact or explosive loading situations.

For this analysis we have considered a rigid—perfectly plastic material, and we have
chosen parameter values of 6, = 150 MPa and p = 8930 kg m~3, which may correspond to
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copper. A value of a, = 10~ ® m for the initial pore size was selected, as well as an initial
porosity of &, = 1074,

The evolution of porosity with time was obtained from the numerical integration of
the dynamic void growth equation, a mechanism which was also assumed to control
fracture. It is well known that coalescence of cavities takes place at a given instant as voids
grow. In this simulation, and just to fix ideas, it is assumed that coalescence takes place by
direct impingement of the cavities when the distance between cavities equals the void radius.
This implies that the corresponding porosity at the instant of coalescence equals & = 0.30.
In consequence, the dynamic tensile strength is defined as the hydrostatic stress acting on
the material for a porosity value of £ = 0.30, and the numerical analyses were made up to
the moment when such a value was reached. In the case of copper, this choice agrees with
experimental observations (Perzyna, 1986).

The influence of deviatoric macroscopic strain rates on the dynamic porosity curves
for a perfectly plastic material is shown in Fig. 1. In this case values of the macroscopic
deviatoric strain rate é, of 0, 10° s™', 10* s=!, 10° s~' and 10° s™' were selected, and a
hydrostatic loading rate of 1.0 GPa us™' was superimposed for all such cases. It is clearly
seen in the figure that the softening effect of the deviatoric field, which causes a decrease in
the hydrostatic stress for a given porosity value as the deviatoric strain rate ép, increases.
Moreover, it can also be seen that the value of the tensile strength is not appreciably affected
by the selection of the critical value of porosity (here taken as ¢ = 0.3), provided that such
a critical value exceeds a small value ranging from 10~* when &, = 0, to about 10~ 2, when
ép = 10° s™ . In effect, for larger porosity values the slope of the stress—porosity curve
tends to be very small, and the stress increases very little until fracture finally takes place.
Since a constant loading rate of 1 GPa us~' has been imposed, time—porosity curves can
be directly obtained from Fig. 1, without making any change in the figure apart from
reading ps in the vertical scale rather than GPa. Then, by taking into account that a
simple calculation shows that &, = &/(1— &) (Cortés, 1989), the volumetric strain histories
corresponding to Fig. 1 may be easily estimated. In Fig. 2 the dynamic tensile strengths
corresponding to hydrostatic loading rates of 1 GPa us~' and 10 GPa us ', alternatively,
are plotted as a function of the macroscopic deviatoric strain rate. In this figure it can be
observed that the tensile strength remains nearly unaffected by the value of &y, for values
of this parameter up to about 5 x 10> s~ for a loading rate of 1 GPa us~', and up to about
10* s~ for a loading rate of 10 GPa us~'. For higher values, the dynamic strength-
deviatoric strain rate curve has a negative slope and, consequently, the dynamic tensile
strength decreases as the deviatoric strain rate increases. This part of the curve corresponds
to a situation where the effect of the deviatoric strain rate field has a net softening effect of
the material, since it supports part of the energy required to cause plastic yielding. Both
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Fig. 1. Stress—porosity curves for ¢ = 1 GPa pus~' and the indicated values of the deviatoric strain
rate.
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Fig. 2. Dynamic tensile strength as a function of the macroscopic deviatoric strain rate for
¢=1GPays~'and 6 = 10 GPa us™'.

curves shown in Fig. 2 show an absolute minimum at a value of the deviatoric strain rate
of about 6 x 10° s™'. We can also see that the decrease in the tensile strength for such a
value of the deviatoric strain rate is very important for the case of a hydrostatic loading
rate of 1 GPa us™', where the dynamic strength reduces to only 44% of the corresponding
value under a purely hydrostatic loading. At a loading rate of 10 GPa us™' this reduction
is less marked, and the value of the dynamic strength is about 77% of the value obtained
when the deviatoric strain rate vanishes. For higher values the dynamic tensile strength
increases very rapidly. This phenomenon corresponds to a situation where the energy
required to overcome the inertia effects introduced by the deviatoric strain rate field exceeds
the corresponding softening effect, in such a manner that plastic void growth becomes
increasingly difficult.

4. DISCUSSION

We have seen in the previous section that the presence of macroscopic deviatoric strain
rates is a factor which may have a remarkable influence on the dynamic tensile strength of
the material. Although in practice it is virtually impossible to control the hydrostatic and
the deviatoric components of the strain rate field which will be experienced by the material
in a given test, it is implied by the present work that, for void growth controlled fracture,
the value of the tensile strength may be affected by the particular deformation velocity field
under which fracture takes place. This fact agrees with the experimental observations, in
the sense that spall strength variations over wide ranges are usually observed for a given
material. From results shown in Fig. 2, it appears that spall fracture controlled by ductile
void growth may take place whenever the deviatoric strain rate does not exceed a sufficiently
large value. Otherwise, the hydrostatic stress needed for void growth becomes excessively
large, and it is expected in such conditions that a different mechanism requiring lower
stresses than those predicted by Fig. 2, such as void nucleation for instance, should instead
control spall fracture. Naturally, since from Fig. 2 we see that the dynamic strength also
increases with the value of the hydrostatic loading rate, a similar conclusion could be stated
referring to increasing values of such parameter. In fact, it has been observed for copper
that a competitive growth process between voids inside the grains, where a tendency to void
nucleation is observed, and those at grain boundaries seems to take place under impact
loading (Buchar et al., 1991). So, for strain rates lower than a critical value the spall strength
is markedly strain rate dependent, and fracture tends to be intergranular. On the contrary,
for higher deformation velocities the spall strength becomes insensitive to strain rate, and
dynamic fracture comes to be transgranular (Buchar ef al., 1991). So, it is clear that the
strain rate sensitive behaviour associated with intergranular fracture can be explained by a
plastic void growth model, analogous to that presented in this work, which predicts that
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both the hydrostatic loading rate and the deviatoric strain rate have influence in the material
tensile strength. For higher strain rates (either hydrostatic or deviatoric), we have seen that
inertia effects become larger making increasingly difficult plastic void growth, and so,
fracture initiation might have to be favoured at void nucleation sites. Consequently, accord-
ing to the present model one might expect a different behaviour in such conditions. Fur-
thermore, it is frequently found that there is an exponential dependence of the nucleation
rate upon the applied stress (Curran ez al., 1987). This means that shortly after the stress
for the onset of nucleation is surpassed, the nucleation rate becomes important and may
eventually control the microstructural damage and thus, material fracture. So, in such
conditions, the spall strength would be expected to vary very little with the loading rate, in
qualitative agreement with the experimental observations for copper of a strain rate insen-
sitive spall strength. Naturally, in such cases the curves shown in Fig. 2 should deviate, in
the range of the highest strain rates when a sudden increase in the tensile strength is
predicted, to lower stresses.

The value of the deviatoric strain rate at which the minimum dynamic tensile strength
occurs {see Fig. 2), is a value which is chiefly affected by the initial microstructural
parameters. In effect, we can roughly estimate the value of the critical deviatoric strain rate,
that is, the value of é,, above which inertia effects become important, by equating the
second term of the right-hand side of eqn (18) to an appropriate fraction of the yield point
of the material, say, fo,, being o, the elastic limit and f a factor much smaller than unity.
Initially, £ is very close to zero, and thus « can be approximated by 1 +£. Then, by recalling
that £ = (a/b)?®, we can state the condition for the onset of inertia controlled void growth
as €3 = 4fv,/(pb?), where b, is one half of the distance between voids. Since it is recognized
that voids may nucleate at inclusions and second phase particles, the result is that, if the
material purity is increased, the value of b, will also increase. Then, the critical value of &,
will rapidly decrease and, consequently, plastic controlled void growth may become difficult
at lower deviatoric strain rates, thus favouring the appearance of a different controlling
mechanism for ductile fracture, such as void nucleation for instance. This result may explain,
at least qualitatively, why transition from intergranular to transgranular fracture is a
phenomenon observed only when copper is of relatively high purity (Buchar ez al., 1991).

5. CONCLUSIONS

In this work has been estimated the effect that the interaction of a purely hydro-
static field and a purely deviatoric stress field, has on the spall strength of ductile materials
for void growth controlled fracture. It has been discovered that, when the volumetric
expansion rate is more important than the deviatoric strain rate then, for void growth con-
trolled dynamic fracture, the spall strength may be affected by the deviatoric field and,
under certain circumstances, cause a considerable decrease in the strength of the material.
On the contrary, when the deviatoric strain rate is very high, stresses required to overcome
the inertia effects associated with the deviatoric strain rate field may become very large, in
such a way that plastic void growth may be very difficult. Under such conditions, it is
expected that a different mechanism, such as void nucleation for instance, should be the
controlling factor in dynamic fracture.
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